18.S096: Max-Cut and Approximation Algorithms

The eight set of Lecture notes, now about Max Cut and Approximation Algorithms, is available here. They include five open problems, briefly documented here. Please see the notes for a lot more detail on the problems, relevant references and more.

 

Open Problem 8.1. (Unique Games Conjecture)

Is the Unique Games conjecture true? In particular, can it be refuted by a constant degree Sum-of-squares relaxation?

Open Problem 8.2. (Sum of Squares approximation ratio for Max-Cut)

What is the approximation ratio (or integrality gap) for the Sum-of-Squares (SOS) relaxation of degree 4 for the Max-Cut problem? What about other constant degrees?

Open Problem 8.3. (The Grothendieck Constant)

What is the value of the (real) Grothendieck constant?

Open Problem 8.4. (The Paley Clique Problem)

What is the clique number of the Paley graph? Can the the SOS degree 4 analogue of the theta number help upper bound it?

Open Problem 8.5. (Maximum and minimum bisections on random regular graphs)

Given a d-regular graph on n nodes G. Let MaxBis(G) and MinBis(G) denote, respectively, the size of its largest and smallest bisection. Is it true that for every d

 MaxBis(G) + MinBis(G) = \frac{d}{2} + o(1),

where o(1) is a term that goes to zero as n grows?

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s